dimensionless的音标为[daɪˈmenɪn(d)ləs],基本翻译为“无量度的”,速记技巧为“dim=尺寸,len=长度,无尺寸=无量度”。
Dimensionless这个词源自希腊语,意为“无尺寸的”。它的变化形式主要是在词尾添加或改变字母。相关单词有:
1. "scale":原意为“刻度,尺度”,在科学和工程领域,常用来描述尺寸或规模。
2. "dimension":源自拉丁语,意为“维度”,常用于描述空间或时间的状态。
3. "ratio":源自拉丁语,意为“比率,比例”,常用于数学中描述两个量之间的关系。
4. "proportional":源自拉丁语,意为“成比例的”,常用于描述两个量之间的相关性。
5. "dimensionless_quantity":无量纲量,表示一个与尺度无关的量。
6. "dimensionless_variable":无量纲变量,表示一个可以随时间或条件变化的量。
7. "dimension_reduction":维度降低,用于减少高维度数据中的冗余或噪声。
8. "dimension_reduction_technique":维度降低技术,用于处理高维度数据的方法。
9. "dimension_reduction_algorithm":维度降低算法,用于实现维度降低的算法。
10. "dimension_reduction_tool":维度降低工具,用于帮助用户理解和处理高维度数据的工具。
以上这些单词都与dimensionless有直接或间接的关系,它们在科学和工程领域中有着广泛的应用。这些单词的出现和使用,使得我们能够更好地理解和处理高维度数据,从而更好地解决实际问题。
常用短语:
1. dimensionless quantity
2. dimensionless ratio
3. dimensionless dimension
4. dimensionless parameter
5. dimensionless function
6. dimensionless equation
7. dimensionless model
双语例句:
1. The velocity of sound is a dimensionless quantity.
2. The ratio of velocity to temperature is a dimensionless ratio.
3. The shape of the particle size distribution is a dimensionless parameter.
4. The function f(x) is a dimensionless function.
5. The equation of motion is a dimensionless equation.
6. The model of fluid flow is a dimensionless model.
7. The dimensionless boundary layer is a special case of fluid flow.
英文小作文:
Dimensionless quantities are a fundamental part of physics and engineering, and they play an important role in many real-world systems. For example, the velocity of sound, the ratio of velocity to temperature, and the shape of the particle size distribution are all dimensionless quantities that can be used to describe various physical phenomena. Another example is the function f(x), which is a dimensionless function that can be used to model various physical processes. Dimensionless equations and models are also commonly used to describe fluid flow and other complex systems, and they provide a useful framework for understanding and predicting these systems. Dimensionless quantities are particularly useful in studying systems that are not well-described by traditional dimensional analysis, such as turbulence and chaos.
名师辅导
环球网校
建工网校
会计网校
新东方
医学教育
中小学学历