autocorrelation的音标是[ɔːtəʊkəˈrekʃən],基本翻译是“自相关”,速记技巧可以是:au(拼音)=auto(缩写)+k(谐音“可”)+r(拼音)=相关。
请注意,以上内容仅供参考,因为不同人对单词的发音和含义可能有不同的理解和表达。建议查阅相关资料以获取最准确的信息。
Autocorrelation这个词源自希腊语词autos,意为“自我”或“自己”,而correlate意为“相关联的事物”。这个词通常用于描述时间序列数据中的自相关现象,即数据自身的模式或重复结构与其前后的数据点相关联。
变化形式:在英语中,autocorrelation没有明显的形式变化。
相关单词:
1. Self-Organizing:这个词与autocorrelation有相似的含义,表示数据或系统自我组织或自组织的过程。例如,self-organizing map是一种神经网络模型,其名称就反映了自组织的特点。
2. Dynamic Autocorrelation:这个词用于描述动态的自相关过程或结构,通常用于金融时间序列分析中。
3. Correlation Time:这个词与autocorrelation有关,表示数据自相关消失的时间,是时间序列分析中的重要概念。
4. Autocorrelation Function:这个词直接源自autocorrelation,表示数据自相关的函数,是时间序列分析中的基本工具。
5. Autocorrelation Coefficient:这个词用于表示数据自相关性的系数,用于定量描述自相关程度。
6. Non-Autocorrelation:这个词表示不具有自相关性的数据,是与autocorrelation相反的概念。
7. Autocorrelation Analysis:这个词用于对时间序列数据进行autocorrelation分析,以发现数据中的模式和结构。
8. Autocorrelation Function Plot:这个词表示绘制autocorrelation函数图,用于直观地展示数据自相关的模式和程度。
9. Autocorrelation Window:这个词用于指定时间序列数据的窗口大小,以计算autocorrelation。
10. Autocorrelation Filter:这个词用于设计用于估计时间序列数据自相关的滤波器。
常用短语:
1. autocorrelation function
2. autocorrelation coefficient
3. lag-dependent autocorrelation
4. serial autocorrelation
5. cross-sectional autocorrelation
6. time-series autocorrelation
7. lag-specific autocorrelation
双语例句:
1. The autocorrelation function of the stock market returns shows a strong positive correlation at short lags.
2. Serial autocorrelation in the inflation rate data leads to estimation bias in the inflation rate forecasting models.
3. The cross-sectional autocorrelation analysis revealed that the returns of small-cap stocks are positively correlated with those of large-cap stocks.
4. Time-series autocorrelation analysis of the data showed that there was no significant relationship between the two variables.
5. The lag-specific autocorrelation analysis showed that the correlation between the two variables was significant at all lags.
6. The autocorrelation coefficient of the stock returns is significantly positive at short lags, indicating that there is a positive relationship between the returns and volatility.
7. The results of the regression analysis showed that there was no significant autocorrelation between the dependent variable and independent variables.
英文小作文:
Autocorrelation is a statistical measure used to determine the degree of correlation between two or more variables over a period of time or across different groups of data. It is commonly used in time-series analysis to identify patterns in data that may indicate trends, cycles, or other patterns that may be useful for forecasting or decision-making purposes.
In my opinion, autocorrelation is an essential tool for analyzing time-series data because it helps us identify patterns and trends that may be missed by other methods such as simple linear regression or correlation analysis. By using autocorrelation, we can better understand the relationship between variables and make more informed decisions about future trends and patterns in the data.
However, it is important to note that autocorrelation is not a perfect measure and may be affected by various factors such as seasonality, measurement error, and other systematic biases in the data. Therefore, it is always advisable to use multiple methods of analysis to ensure a more comprehensive understanding of the data and its patterns.