bisector的音标是[baɪˈsektə(r)],基本意思是“等分线,等分器”或“等分线段的人”。速记技巧是利用谐音速记法,可以将bisector快速记作“毙叉特”,帮助记忆。
英文单词bisector的词源可以追溯到拉丁语bis-(两次)和-sectio(切割)。它的意思是“两次切割的人”,通常用于描述能够将一个对象分成两个相等或接近相等的部分的工具或方法。
bisector的变化形式主要有名词和动词两种。作为名词时,它可以指代任何能够进行两次切割的对象,如几何学中的角平分线等。作为动词时,它表示将一个对象进行两次切割的操作。
相关单词有sector、section、dissect、dissective、bisect、bisection、dice、division、fraction等。这些单词都与切割、分切有关,其中sector和section是名词,表示区域或部分;dissect和dissective是动词,表示解剖或分析;bisect和bisection也是动词,前者表示将对象分成两半,后者表示将对象分成相等的两部分。这些单词在英语中都广泛使用,具有丰富的词义和用法。
常用短语:
1. midpoint bisector
2. angle bisector
3. median bisector
4. height bisector
5. intercept bisector
6. mid-range bisector
7. mid-point bisector of a circle
双语例句:
1. The midpoint bisector of a triangle divides each side into two equal lengths.
三角形的中位线将每条边分成相等的长度。
2. The angle bisector of a right angle divides the angle into two equal parts.
直角的角平分线将角分成两个相等的部分。
3. The median bisector of a rectangle divides the rectangle into two equal parts.
矩形的中位线将矩形分成两个相等的部分。
英文小作文:
Bisectors: The Key to Understanding Geometry
Bisectors are a fundamental concept in geometry, helping us to understand how shapes are divided into equal parts. Whether it"s the midpoint bisector of a triangle, the angle bisector of a right angle, or the median bisector of a rectangle, they provide a key to understanding how shapes work.
When we draw a line through a point and divide the shape into two equal halves, we have a midpoint bisector. It"s important to note that not all bisectors are created equal, as some may not divide the shape evenly. However, when it comes to geometry, the right bisector can be used to solve many problems and help us understand the properties of shapes.
For instance, consider the triangle shown above. When we draw a line through its midpoint and divide the triangle into two equal halves, we have a midpoint bisector. This means that the two halves are now equilateral triangles, with all sides and angles being equal. This helps us understand how triangles work and how to measure their properties.
Bisectors are also used in other contexts, such as in trigonometry and coordinate geometry. Understanding how to use and identify different types of bisectors can help us solve problems and create new ones in geometry and beyond.