"classifier" 的音标是[ˈklæsɪfaɪə(r)],基本翻译是"分类器;等级;类别;标签",速记技巧可以考虑用拼音缩略法,将其记为"类分阿姐"(classification agent)。
Classifier这个词的词源可以追溯到拉丁语词根"clasus",意为"分类的"。这个词在英语中主要用作名词,表示分类器或分类系统。
变化形式:classifier可以变为形容词classifier(分类的)和动词classify(分类)。
相关单词:
1. classification(分类):这个词指的是将事物按照一定的标准进行分类的过程。例如,生物学中对生物的分类,计算机科学中对数据的分类等。
2. subclass(亚科):在分类学中,亚科是比科更细的分类级别,表示一种更接近于属的分类。
3. generic(一般的):generic这个词可以用来描述分类中的一般情况或标准。
4. order(顺序):order在分类学中指的是生物或物体的顺序或排列方式。
5. taxonomy(分类学):taxonomy是研究生物分类的学科,是生物学的一个重要分支。
6. genus(属):genus是生物分类学中最基本的单位之一,表示一种具有共同特征的一组生物。
7. family(家族):family在生物分类学中指的是一个具有共同祖先和遗传特征的一组生物。
8. species(物种):species是生物分类学中最基本的单位,表示一种可以在自然界中独立存在的生物群体。
9. binomial(二名法):binomial是生物命名法的一种,要求每个物种都有两个拉丁文名字,通常由属名和种名组成。
10. hierarchical(分层的):在生物分类学中,分类系统通常是一个分层结构,表示各种生物之间的关系。
常用短语:
1. classifier noun
2. classifier adjective
3. by classification
4. classification algorithm
5. classification accuracy
6. unclassified
7. top-level classification
双语例句:
1. The dataset was classified into two categories based on its features.(根据数据集的特征,它被分类为两个类别。)
2. The classifier achieved an accuracy of 85% in classifying the images.(分类器在图像分类中取得了85%的准确率。)
3. The unclassified documents remain a mystery to us.(未分类的文件对我们来说仍然是一个谜。)
4. The top-level classification of the military equipment is confidential.(军事装备的最高级别分类是机密的。)
5. The classification algorithm is a crucial component of data analysis.(分类算法是数据分析的关键组成部分。)
6. Classification is a fundamental task in machine learning.(分类是机器学习中的一项基本任务。)
7. We need to classify the data before we can perform any analysis on it.(我们需要对数据进行分类,然后才能对它进行任何分析。)
英文小作文:
Title: Classification of Data for Better Analysis
In the world of data analysis, classification is a crucial step that often goes unnoticed. Without proper classification, it becomes difficult to gain insights and make meaningful conclusions from the data. Classification helps us organize data into groups based on certain criteria, making it easier to compare and contrast different data sets.
For example, when we classify data based on its category or subject, we can easily identify patterns and trends within the data. This helps us understand the data better and make more accurate predictions about future trends. Similarly, we can also classify data based on its source or origin, allowing us to analyze it in a more holistic manner.
Moreover, classification plays a vital role in machine learning algorithms, where it is used to train artificial intelligence systems to recognize patterns and make decisions based on data inputs. By classifying data into different categories, machine learning algorithms can learn to identify patterns and associate them with certain outcomes, resulting in more accurate predictions and actions.
Therefore, it is essential to perform proper classification of data before performing any analysis on it. This will help us gain a better understanding of the data and make smarter decisions based on the insights gained from the analysis.