contractibility 的音标为 [kəntræktɪˈbɪləti],基本翻译为“可收缩性”,速记技巧为:用字母缩写记忆:可缩(k、n、r、t、i)表示可收缩。
Contractibility这个词的词源可以追溯到拉丁语和希腊语,具体来说,它是由“contract”(收缩)和“ibility”(可…性)组成的合成词。这个词的含义是指一个空间或对象在某种条件下可以被“contract”成更简单或更小的一部分。
变化形式:contractible,过去式contracted,现在分词也是contractible。
相关单词:
1. contraction - 收缩,紧缩
2. expandable - 可扩展的,可扩充的
3. simplify - 简化
4. elementary - 基本的,初级的
5. reduction - 减少,降低
6. simplistic - 极简主义的,过于简单的
7. miniaturization - 微型化,小型化
8. essential - 本质的,基本的
9. concise - 简洁的,精炼的
10. compact - 紧凑的,小巧的
以上这些单词都与contractibility有直接或间接的联系,因为它们都涉及到对事物进行简化、缩小或改变的过程。
contractibility常用短语:
1. contractibility condition
2. contractibility radius
3. contractible region
4. locally contractible
5. globally contractible
6. contractibility operator
7. contractibility dimension
双语句子:
1. 这个区域是可收缩的。 The region is contractible.
2. 这个问题在局部是可收缩的。 The problem is locally contractible.
3. 地球表面大部分区域是可收缩的。 Most regions of the Earth"s surface are contractible.
4. 局部可收缩区域在某种意义上比非可收缩区域更常见。 Locally contractible regions are, in a sense, more common than non-contractible regions.
5. 这个问题在全局范围内是可收缩的。 The problem is globally contractible.
6. 如果你想让一个区域可收缩,你需要找到一个合适的收缩策略。 If you want to make a region contractible, you need to find a suitable contraction strategy.
7. 局部可收缩性对于许多实际问题来说是非常有用的性质。 Local contractibility is a very useful property for many practical problems.
英文小作文:
Contractibility is a very important concept in mathematics, especially in topology and its applications to engineering and other fields of science. It refers to the ability of a region or space to shrink or deform under certain conditions, without tearing or splitting. In engineering, for example, contractibility is used to design structures that can adapt to changes in load or environment without compromising strength or stability.
In topology, contractibility is used to study the properties of spaces and maps, and to identify topological structures that are more stable or robust than others. It also helps to understand how spaces can change under certain transformations or deformations, and how these changes affect the topology of the spaces.
However, contractibility is not always easy to prove or determine in practical situations, so it requires careful analysis and mathematical reasoning. Understanding contractibility can help us better understand the properties of spaces and maps, and can also be applied to other areas of science and engineering.