curvilinear的音标为[ˌkɜːrviˈliːnɪə(r)],基本翻译为“曲线式的;非直线的”,速记技巧为“curv(曲线)+ line(线条)+ eir(她的所有格)”。
Curvilinear这个词源自拉丁语词根curvus,意思是弯曲的。它的变化形式包括名词curvilinearity和动词curvify。
相关单词:
1. Curve(曲线):这个词直接源自curvilinear,表示一个弯曲或弯转的线条或形状。
2. Bending(弯曲):这个词表示物体由于受到外力而发生的弯曲变形,也常与curvilinear这个词一起出现。
3. Sinuous(蜿蜒的):这个词用来形容线条或路径弯曲或蜿蜒的形状,也常与curvilinear这个词一起使用。
4. Curvature(曲率):这个词表示物体在某个方向上的弯曲程度,常用于数学和物理领域。
5. Curvaceous(曲线美的):这个词用来形容女性身体曲线优美,常用于形容女性身材。
6. Curvilinear integral(曲线积分):这是一个数学术语,表示在曲线上的积分运算,常用于解决一些几何和物理问题。
7. Curvilinear motion(曲线运动):这是一个物理学概念,表示物体沿着弯曲路径的运动,常用于描述天体运动等复杂情况。
8. Curvilinear system(曲线系统):这是一个数学术语,表示一个由多个曲线组成的系统,常用于几何学和拓扑学等领域。
9. Curvelet(曲线条):这是一个计算机视觉领域的术语,表示一种图像处理技术,用于提取图像中的细小曲线特征。
10. Curvature tensor(曲率张量):这是一个数学术语,表示描述三维空间中物体曲率大小的一种张量,常用于物理和工程领域。
常用短语:
1. curved line
2. curvilinear growth
3. curvilinear relationship
4. curvilinear graph
5. curvilinear coordinate
6. curvilinear motion
7. curvilinear equation
例句:
1. The graph shows a curvilinear increase in sales with increasing prices.
2. The ship was moving in a curvilinear trajectory.
3. The relationship between the two variables is curvilinear.
4. The data points are scattered in a curvilinear fashion.
5. The curve represents a curvilinear relationship between the two variables.
6. The equation is a curvilinear representation of the relationship between two variables.
7. We need to consider the impact of curvilinear trends on our analysis.
英文小作文:
Curvilinear trends in data analysis
In data analysis, we often encounter situations where the relationship between variables is not linear but rather curvilinear. This can occur when there is an interaction between two or more factors, or when the data itself exhibits a non-linear pattern. Understanding these trends is crucial for accurate interpretation of the data and effective decision-making.
When dealing with curvilinear trends, it is important to consider various factors such as sample size, measurement errors, and other potential biases. It is also essential to have a clear understanding of the underlying assumptions of the model being used for data analysis. Depending on the nature of the data and the specific context, different methods may be employed to address curvilinear trends, such as curve fitting techniques, nonlinear regression analysis, or machine learning algorithms.
Through careful analysis and appropriate methodologies, we can gain a deeper understanding of the patterns in the data and make more informed decisions based on the results. Curvilinear trends can provide valuable insights into the dynamics of a system that might otherwise be overlooked in a linear analysis.