gibs的音标是[ˈdʒɪbz],基本翻译是吉布斯。速记技巧可以是将其发音联想为“吉布斯是”,帮助记忆单词拼写。
GIBS这个词源可以追溯到古英语,它来自中古英语中的gibs,意为“盖子”或“盖子状物”。这个词源在英语中一直沿用至今。
变化形式:在英语中,GIBS的形式没有发生太大的变化,它保持了原始的形式和发音。
相关单词:
1. Gibbet - 一种用于示众的吊架,源自GIBS(盖子)和et(表示某种动作)。
2. Gibber - 意为“胡言乱语”,源自gibberish(胡言乱语)和GIBS(盖子)。
3. Gibbs - 这是一个姓氏,也指一种特殊的机械装置,用于处理和提取石油,它也与GIBS这个词源有关。
4. Gibble-gobble - 意为“咕噜咕噜的声音”,源自gibberish(胡言乱语)和gobble(咕噜声)。
5. Gibberish - 意为“胡言乱语”,源自gibber(胡言乱语)和-ish(表示某种状态或行为)。
6. Gibus - 一种用于制作礼帽的布料,源自GIBS(盖子)和-us(表示某种状态或行为)。
7. Gibbous - 意为“半圆的”,源自GIBS(盖子)和-ous(表示某种性质或状态)。
8. Gibbeted - 意为“示众的”,源自GIBS(盖子)和-ed(表示某种状态或结果)。
9. Gibberingly - 意为“胡言乱语地”,源自GIBS(盖子)和-ingly(表示某种方式或状态)。
10. Gibberishly - 意为“胡言乱语地”,源自GIBS(盖子)和-ly(表示某种方式或状态)。
以上这些单词都与GIBS这个词源有着密切的联系,并且都反映了其在英语中的广泛应用和演变。
常用短语:
1. Gibbs phenomenon
2. Gibbs phenomenon of the Laplace operator
3. Gibbs measure
4. Gibbs state
5. Gibbs phenomenon in differential equations
6. Gibbs-type phenomena
7. Gibbs-like phenomenon
例句:
1. The function is piecewise smooth, and there is a Gibbs phenomenon around the discontinuity points.
2. When solving the boundary value problem of the heat equation, there often appears a kind of oscillatory behavior, which is called Gibbs phenomenon.
3. The Gibbs phenomenon occurs when the numerical method is applied to the numerical solution of differential equations.
4. The Gibbs phenomenon of the Laplace operator is a typical example of the singular integral equation.
5. The Gibbs phenomenon of the variational method is a kind of oscillation phenomenon in the numerical solution of differential equations.
6. The Gibbs phenomenon is a typical example of the oscillation phenomenon in numerical methods for partial differential equations.
7. The Gibbs phenomenon is a kind of complex oscillation phenomenon in numerical methods for partial differential equations, which needs to be carefully analyzed and solved.
英文小作文:
Gibbs Phenomenon: An Important Challenge in Numerical Analysis
Gibbs phenomenon is a typical example of complex oscillation phenomena in numerical methods for partial differential equations, which often causes numerical instability and inaccuracy in numerical solutions. Therefore, it is an important challenge for numerical analysts to analyze and solve the Gibbs phenomenon effectively and accurately. In practice, it is necessary to carefully choose the mesh size and other factors to avoid the occurrence of the Gibbs phenomenon, and to use appropriate numerical methods to improve the accuracy and stability of numerical solutions. Understanding and solving the Gibbs phenomenon is crucial for improving the accuracy and stability of numerical simulations and applications in science and engineering.