arsines的音标为[ə"raɪzɪnz],基本翻译为“砷”。
速记技巧:将单词拆分后分别记忆,如ar-i-ses。
请注意,以上内容仅供参考,建议查阅相关文档或资料以获取最准确的信息。
Arsines这个词的英文词源可以追溯到拉丁语“arsenicum”或“arsenalium”,意为“砷”或“砷的化合物”。这个词在英语中常用来表示砷的化合物,如砷酸盐和砷酸氢盐等。
变化形式:复数形式是“arsenides”,过去式是“arsenized”或“arsenized”,现在分词是“arsenizing”。
相关单词:
arsenic:砷,一种有毒元素,常用于化学和工业中。
arsenite:砷酸盐,一种含砷的化合物,常用于农业和工业中。
arsenic oxide:砷酸氧化物,一种常见的砷化合物,用于制造玻璃和陶瓷。
arsenic sulfide:硫化砷,一种常见的砷化合物,用于制造玻璃和陶瓷。
arsenic trioxide:三氧化二砷,也被称为砒霜,是一种常见的砷化合物,用于治疗某些癌症。
arsenic acid:砷酸,一种强酸,用于化学和工业中。
arsenic sulfide oxide:硫化砷酸氧化物,一种混合物,用于制造玻璃和陶瓷。
arsenic sulfide hydrate:含水硫化砷酸盐,一种含砷的化合物,用于制造玻璃和陶瓷。
arsenic sulfide carbonate:碳酸盐硫化砷,一种含砷的化合物,用于制造玻璃和陶瓷。
arsenic sulfide oxide hydrate:含水硫化砷酸氧化物混合物,用于制造玻璃和陶瓷。
以上这些单词都与arsines这个词有直接或间接的关系。它们在化学、工业、农业和材料科学等领域都有广泛的应用。同时,这些单词也反映了砷这种元素的多样性和复杂性。
常用短语:
1. in the arcsine of
2. arcsine of x
3. arctangent of
4. arctangent of x
5. sine of
6. sine function
7. cosine of
8. cosine function
例句:
1. The arcsine of the ratio of the areas of two circles determines the angle between them.
2. The arctangent of the temperature gives the angle between the horizontal and the vertical in a thermometer.
3. The sine function is used to determine the height of an object from its length.
4. The cosine function is used to determine the distance between two points on a circle.
5. The arcsine of a number is a measure of how far from the median a value is.
6. The arctangent of a number gives the angle between 0 and 180 degrees that number represents.
7. The sine and cosine functions are used in trigonometry to determine the orientation of objects and angles in space.
英文小作文:
The Arithmetic and Trigonometric Functions: Tools for Understanding the World
In mathematics, there are functions that describe how numbers behave in certain contexts. Arithmetic functions, such as addition, subtraction, multiplication, and division, are fundamental tools for understanding numbers and relationships between them. On the other hand, trigonometric functions, such as sine, cosine, and arctangent, are used to describe angles and shapes in three dimensions. These functions are essential for understanding motion in space, such as the orientation of objects and the angles between them.
The arcsine and arctangent functions are particularly useful for measuring angles and determining relationships between values. For example, in geometry, the arcsine of the ratio of two circles" areas determines their angle, while the arctangent of a temperature gives the angle between the horizontal and vertical in a thermometer. Similarly, in physics, the sine and cosine functions are used to describe the orientation of objects and angles in space, such as the height of an object from its length or the distance between two points on a circle.
These functions are not only fundamental to mathematical reasoning but also to practical applications, such as engineering, physics, and astronomy. Understanding these functions allows us to make sense of measurements and measurements relationships in a more comprehensive way, providing us with a deeper understanding of the world around us.