chemisorb的音标是[ˌkemɪˈsɔːb],意思是化学吸附。基本翻译是化学吸附,速记技巧可以是谐音记忆:“克米扫”。
Chemisorb这个词的词源可以追溯到化学吸附(chemical adsorption)这个概念,它指的是物质与表面之间的化学相互作用。这个词是由“化学”(chemical)和“吸附”(adsorb)两个词组合而成的。
变化形式:在英语中,chemisorb没有明显的变化形式。
相关单词:
1. adsorb:这个词与chemisorb密切相关,同样表示物质与表面之间的吸附作用。
2. desorb:与adsorb相反,desorb表示物质从表面上的脱离,即解吸作用。
3. sorption:这个词表示吸附作用,可以指物质在表面上的吸附过程和性质。
4. desorption:与sorption相关,desorption表示从表面上的脱离过程,常用于描述气态或液态物质在表面上的解吸行为。
5. adsorbate:吸附物,指被吸附在表面上的物质。
6. adsorbent:吸附剂,指用于吸附物质的材料。
7. desorbent:解吸剂,指用于使物质从表面脱离的材料。
8. chemisorption:化学吸附,指通过化学反应实现的吸附作用。
9. chemisorcerer:化学吸附剂,指能够进行化学吸附的物质或材料。
10. chemisorption energy:化学吸附能,指物质在表面上的吸附所需的能量。
常用短语:
1. chemisorb onto
2. chemisorb at
3. chemisorption
4. adsorb onto
5. adsorb at
6. surface chemisorption
7. chemisorption energy
双语例句:
1. Metal oxide surfaces chemisorb gases at low temperatures. (金属氧化物表面在低温下对气体进行化学吸附。)
2. The chemical bonds formed during chemisorption are stronger than those formed during physisorption. (化学吸附形成的化学键比物理吸附形成的化学键更强。)
3. The chemisorption process is influenced by the surface composition and the chemical nature of the adsorbate. (化学吸附过程受到表面组成和吸附物的化学性质的影响。)
4. The chemisorption energy is used to determine the adsorption energy and the adsorption energy is related to the chemical properties of the surface. (化学吸附能用于确定吸附能,而吸附能与表面的化学性质有关。)
5. The chemisorption process is a complex process that involves electron transfer between the adsorbate and the surface. (化学吸附过程是一个复杂的过程,涉及到吸附物和表面之间的电子转移。)
6. The chemisorption of oxygen on iron surfaces is a crucial process in the formation of rust. (铁表面氧气化学吸附是形成锈的关键过程。)
7. The chemisorption of carbon monoxide on copper surfaces is used in industrial processes for the production of hydrogen and carbon monoxide. (一氧化碳在铜表面上的化学吸附在工业生产氢气和一氧化碳的过程中被使用。)
英文小作文:
Chemisorption: The Key to Surface Reactivity
Chemisorption, a process where molecules undergo chemical bonding with a surface, is crucial to understanding the reactivity of materials at the surface. From gases to liquids to solids, chemisorption plays a significant role in determining how materials interact with their environment.
For instance, metal oxide surfaces chemisorb gases at low temperatures, forming strong chemical bonds that influence their reactivity. Chemisorption energy, which can be used to determine adsorption energy, is related to the chemical properties of the surface, and thus its reactivity.
Moreover, chemisorption processes are complex and involve electron transfer between the adsorbate and the surface. This transfer alters the chemical state of the surface, leading to changes in surface reactivity. Understanding these processes is essential for optimizing materials for various applications, including catalysis, gas storage, and more.
In conclusion, chemisorption is a fundamental process that determines surface reactivity and thus material behavior in their environment. Understanding this process is crucial for developing new materials and optimizing existing ones for various applications.