免费试听
conjugate point的音标是[kənˈdʒuːgeɪt] ,基本翻译是共轭点。速记技巧是可以在单词中间隔开写,避免连读,有助于记忆。
Conjugate point的词源:
Conjugate point这个词来源于拉丁语,意为“共轭点”。这个词是由“conjugare”(意为“结合”)和“punctum”(意为“点”)组成的合成词。
变化形式:Conjugate point作为名词时,复数形式为conjugate points。
相关单词:
1. Conjugate pairs(共轭对):一对共轭点或共轭线段。
2. Symmetric points(对称点):在某些几何图形中,如果一个点在另一个点的对称位置上,那么这两个点就被称为对称点。
3. Conjugate planes(共轭平面):在几何学中,两个平面关于某个直线共轭,这两个平面被称为共轭平面。
4. Conjugate ratios(共轭比):在几何学中,两个线段或角度之间的共轭比是指它们之间的某种比例关系。
5. Conjugate systems(共轭系统):在化学或工程中,两个系统之间的共轭关系是指它们之间的某种相互作用或影响。
6. Conjugate coordinates(共轭坐标):在物理学中,两个坐标之间的共轭关系是指它们之间的某种关联或影响。
7. Conjugate functions(共轭函数):在数学中,两个函数之间的共轭关系是指它们的某些性质或属性之间的关联。
8. Conjugate vectors(共轭向量):在物理学中,两个向量之间的共轭关系是指它们之间的某种方向或大小关系。
9. Conjugate pairs of numbers(共轭数对):在数学中,两个数之间的共轭关系是指它们的正负号相反。
10. Conjugate points on curves(曲线上的共轭点):在几何学中,曲线上的某些点被称为共轭点,这些点具有某种特殊的关系或性质。
常用短语:
1. conjugate (动词和名词的)配对点
2. conjugate equations 配对方程
3. conjugate matrix 配对矩阵
4. conjugate points 共轭点
5. conjugate vectors 共轭向量
6. conjugate space 配对空间
7. conjugate symmetry 对称配对
双语例句:
1. The two curves have conjugate points, indicating that they are similar in nature.
两条曲线具有共轭点,这表明它们在本质上相似。
2. The conjugate matrix of this system of equations is invertible, indicating that the system has no singularities.
这个方程组的配对矩阵是可逆的,表明该系统没有奇点。
3. The conjugate symmetry of this problem allows us to simplify the analysis and solve it more efficiently.
这个问题对称配对,这使我们能够简化分析并更有效地解决它。
英文小作文:
Conjugate Points: A Key to Understanding Differential Equations
Differential equations are a fundamental tool in mathematics and physics, and understanding their solutions is crucial. One particularly interesting aspect of differential equations is the concept of conjugate points, which can help us understand the nature of the solutions better.
Conjugate points are points in the graph of a differential equation where the slope changes abruptly, indicating a singularity in the solution. These points can be found by examining the coefficients in the equation and their relationships to each other. When two curves have conjugate points, they are similar in nature, even if they look different on the surface.
Understanding conjugate points can help us better identify and solve differential equations, as they indicate potential problems in the solutions that may be overlooked otherwise. Furthermore, they provide a way to understand symmetry and similarity between different equations and solutions, which can be useful in applications such as engineering and physics.
名师辅导
环球网校
建工网校
会计网校
新东方
医学教育
中小学学历