"bioinformatics" 的音标为[ˌbaɪəʊɪnformɪˈtɑːks]:/baɪoʊɪn/ bio(生物)+ /ɪn/ form(形式)+ /ɪt/ m(信息)+ /k/ t(名词后缀)。
基本翻译为“生物信息学”,是生物科学和计算机科学交叉的一个领域,主要研究生物数据的管理、储存、检索和应用。
速记技巧可以考虑将每个部分拆分记忆,如“生物信息学”可以简化为“生物英信息学”,这样更便于记忆。同时,也可以将单词与相关概念或实物相联系,如看到电脑就想到“信息”,看到电脑上的生物数据就想到“生物信息学”。此外,还可以使用一些记忆法或故事来增强记忆。
Bioinformatics是一个结合了生物学和信息学的交叉学科,主要涉及生物数据的处理和分析。以下是我列出的一些与bioinformatics相关的英文词源、变化形式和相关单词:
1. Biological:词源为生物学,是bioinformatics的基础。Bioinformatics主要研究生物数据,因此与生物学密切相关。
变化形式:Biological - biology - biologist - biological information - bioinformatics
相关单词:genomics(基因组学)、proteomics(蛋白质组学)、metabolomics(代谢组学)等。
2. Informatics:词源为信息学,是information的词干加上后缀-atics构成的。Bioinformatics是信息学的一个分支,主要研究生物数据的处理和分析。
变化形式:Informatics - information - informatician - information technology - bioinformatics technology
相关单词:data mining(数据挖掘)、data analysis(数据分析)、data visualization(数据可视化)等。
3. Bio-:词源为生物,常用于生物学的术语中。Bioinformatics中经常使用bio-作为前缀,表示与生物学相关的信息学。
变化形式:Bio- - bioinformatics - biotechnology - bioengineering - biocomputing
相关单词:biomarker(生物标记物)、biomass(生物量)、biocatalysis(生物催化)等。
4. -ology:词源为名词后缀,表示对某一领域的研究。Bioinformatics是一个研究生物数据的学科,因此可以使用-ology作为其名词后缀。
变化形式:Bioinformatics - bioinformatics research - bioinformatics engineer - bioinformatics scientist
相关单词:genomics research(基因组学研究)、metabolomics research(代谢组学研究)等。
5. -graphy:词源为名词后缀,表示记录或描绘。在bioinformatics中,可以使用-graphy来表示生物数据的处理和分析过程。
变化形式:Bioinformatics - bioinformatics process - bioinformatics analysis - bioinformatics data processing
相关单词:sequence analysis(序列分析)、sequence alignment(序列比对)等。
以上是我列出的一些与bioinformatics相关的英文词源、变化形式和相关单词,这些词汇在bioinformatics中具有重要地位和广泛的应用。
常用短语:
1. bioinformatics analysis
2. genomics and proteomics
3. next-generation sequencing
4. computational biology
5. data integration
6. machine learning in bioinformatics
7. bioinformatics tools and resources
例句:
1. Bioinformatics analysis of gene expression data can help us better understand the function of genes.
2. Next-generation sequencing technology has greatly improved the speed and accuracy of genome research.
3. Computational biology has become an essential tool for biomedical research.
4. Data integration in bioinformatics can help us find patterns and trends that would otherwise be missed.
5. Machine learning algorithms can be used to identify patterns in large amounts of bioinformatics data.
6. Bioinformatics resources such as databases and software tools are essential for effective research.
英文小作文:
Bioinformatics is a rapidly developing field that has revolutionized the way scientists study the human genome and other biological systems. Through advanced computational methods and innovative technologies, bioinformaticians have developed powerful tools that allow researchers to analyze vast amounts of data and identify patterns and trends that would otherwise be impossible. These tools have become essential for understanding the function of genes, identifying disease genes, and developing new therapeutic strategies.
However, bioinformatics is not just about technology; it is also about collaboration and communication. Bioinformaticians need to work closely with biologists, clinicians, and other researchers to integrate data, share resources, and develop new methods that can be applied to real-world problems. This requires a strong teamwork spirit and a willingness to learn new skills and techniques.
In the future, bioinformatics will continue to play an increasingly important role in biomedical research, as new technologies and methods are developed to improve the accuracy and speed of research. It is expected that bioinformaticians will continue to play a key role in this process, working closely with other researchers to develop new tools and resources that will help us understand the human genome and other biological systems better.