geodesist的音标为[ˌdiːəʊˈzɪzɪst],基本翻译为“地质力学”。
速记技巧:将该单词拆分,其中geo-表示“地球”,-dynamics表示“动力学”,组合起来即为研究地球动力学的学科。
Geodesist(地引力)这个词源于希腊语词根“geo”(土地)和“desmos”(连接)结合而成,意为“地球引力理论”。
变化形式:名词形式为geodesics(地线),动词形式为geodesize(沿地线移动)。
相关单词:
1. Geodesic Dome(地线球体):一种由地线构成的圆形结构,通常用于建筑和空间设计。
2. Geodesic Map(地线图):一种基于地线原理的地图,可以显示地形的高程和变化。
3. Geodesic Analysis(地线分析):一种用于分析地球引力场的方法。
4. Geodesic Sphere(地线球):一种由地线构成的三维物体,类似于地球的形状。
5. Geodesic Network(地线网络):一种用于描述地形或结构中地线分布的系统。
6. Geodesic Dust(地线尘埃):一种假设存在的粒子,它们在地线中传播并影响地球引力场的分布。
7. Geodesic Wave(地线波):一种在地线中传播的波动,可以影响地球引力场的分布。
8. Geodesic Corridor(地线走廊):一种在地线上形成的通道,通常用于描述地形或结构的特定区域。
9. Geodesic Tension(地线张力):指在地球引力场中,物体在地线上产生的张力。
10. Geodesic Theory(地线理论):一种综合了地球引力、物理和几何学的理论,用于解释地球引力场的性质和分布。
常用短语:
1. geodesic distance(欧氏距离)
2. geodesic sphere(测地球)
3. geodesic line(测地线)
4. geodesic triangle(测地三角形)
5. geodesic sphere packing(测地球填充)
6. geodesic graph(测地图)
7. geodesic flow(测地流)
双语例句:
1. The geodesic distance between two points is the shortest distance on the surface of the sphere.(两点之间的测地距离是球面上的最短距离。)
2. The geodesic sphere packing demonstrates the efficiency of the packing method.(测地球填充展示了填充方法的效率。)
3. The geodesic line follows the shortest path between two points on the surface of the sphere.(测地线遵循球面上的两点之间的最短路径。)
4. The geodesic triangle is a triangle formed by three points on the surface of the sphere.(测地三角形是由球面上的三个点形成的三角形。)
5. The geodesic flow describes the motion of particles on the surface of the sphere.(测地流描述了球面上的粒子的运动。)
6. The geodesic graph represents the interconnection of points on the surface of the sphere.(测地图表示球面上的点的相互关系。)
7. The geodesic flow on a curved surface is a complex problem that requires advanced mathematical tools.(在弯曲表面上测地流是一个复杂的问题,需要高级数学工具。)
英文小作文:
Title: The Beauty of Geodesics on a Sphere
The geodesic system on a sphere is a fascinating concept that brings together geometry and topology in a beautiful way. From the simplest distance measure to complex patterns formed by multiple points, geodesics on a sphere reveal a world full of intricate details and fascinating patterns.
From two points on the surface of the sphere, the geodesic distance defines the shortest path between them, while the geodesic line follows this shortest path. Together, they form a complete picture of the relationship between two points, highlighting their proximity and connection.
Moreover, the geodesic triangle, formed by three points on the sphere, is another beautiful geometric construct that demonstrates how three seemingly unrelated points can form a well-defined shape with specific properties. The geodesic flow, describing the motion of particles on the surface of the sphere, is another complex phenomenon that requires advanced mathematical tools to understand.
In summary, geodesics on a sphere are a beautiful example of how geometry and topology can come together to form complex patterns and relationships that reveal a world full of hidden beauty and complexity.
名师辅导
环球网校
建工网校
会计网校
新东方
医学教育
中小学学历