"anisotropic" 的音标为[ˌæni:səuˈrɔtik] ,基本翻译为“各向异性的”,速记技巧为:各向异性→an(各)+iso(一样)+tro(三)+pic(性质)→各向异性的。
Anisotropic这个词的词源可以追溯到拉丁语,意为“有向的,各向异性的”。这个词的含义是指物体或现象在各个方向上具有不同的性质或特点。
变化形式:在英语中,Anisotropic没有明显的变化形式,因为它是一个形容词,表示的是一种属性或特征,而不是一个名词。
相关单词:
1. Birefringence(双折射):当光通过各向异性的介质时,会发生偏振方向的变化,这种现象称为双折射。
2. Polarization(极化):极化是指光波在传播方向上分解为两个振动方向相反的偏振光的现象。
3. Texture(纹理):纹理是物体表面或内部的一种视觉效果,它可以通过各向异性材料的表现出来,如木材、玻璃或混凝土等。
4. Diffraction(衍射):当光穿过各向异性介质时,光的传播方向会发生改变,这种现象称为衍射。
5. Anisotropy(各向异性):这个词可以用来描述物体或现象在各个方向上的不同性质或特点。
6. Optic(光学):光学是研究光在各种介质中传播、反射、折射、散射等性质的科学。
7. Electromagnetic(电磁学):电磁学是研究电场、磁场和电磁波的性质和应用的科学。
8. Gravity(重力):重力是地球对物体产生的吸引力,它是一种各向同性的力。
9. Elasticity(弹性):弹性是指物体在外力作用下能够恢复原状的能力,它是一种各向同性的性质。
10. Elastic(弹性体):弹性体是指具有弹性性质的物质,如橡胶、塑料等。它们在外力作用下会发生变形,但当外力消失时,它们会恢复原状。
常用短语:
1. anisotropic elasticity - 各向异性弹性
2. anisotropic material - 各向异性材料
3. anisotropic stress - 各向异性应力
4. anisotropic diffusion - 各向异性扩散
5. anisotropic flow - 各向异性流动
6. anisotropic electromagnetism - 各向异性电磁学
7. anisotropic crystal - 各向异性晶体
双语例句:
1. The material we are studying exhibits significant anisotropic properties. (我们研究的材料表现出显著的各向异性性质。)
2. The flow of the fluid was highly anisotropic due to the presence of strong winds. (由于强风的缘故,流体的流动表现出高度的各向异性。)
3. The stress in the ground was found to be highly anisotropic due to the uneven terrain. (由于地形的不均匀性,地下的应力被发现具有高度的各向异性。)
4. The electromagnetic field around a conducting object exhibits significant anisotropic behavior. (一个导电物体周围的电磁场表现出显著的各向异性行为。)
5. The diffusion process in this material is highly anisotropic due to its unique microstructure. (由于这种材料独特的微观结构,其扩散过程表现出高度的各向异性。)
6. The behavior of stars in the universe is often described using anisotropic models. (宇宙中恒星的行为通常使用各向异性模型来描述。)
7. The magnetic field around a magnetic dipole exhibits significant anisotropy due to its orientation and strength. (磁偶极子周围的磁场由于其方向和强度而表现出显著的各向异性。)
英文小作文:
Anisotropy refers to the property of something that varies in different directions or has different properties in different directions. In materials science, anisotropy refers to the property of materials that have different mechanical, physical, or chemical properties in different directions. This can be due to differences in crystal structure, microstructure, or other factors.
For example, rubber has an isotropic property when it is stretched in one direction, but becomes anisotropic when stretched in different directions, with different mechanical properties in each direction. Another example is the magnetic field around a magnetic dipole, which exhibits significant anisotropy due to its orientation and strength.
In nature, many phenomena exhibit anisotropy, such as the flow of fluids and the behavior of stars in the universe. Understanding and exploiting anisotropy can have significant implications for engineering and science, and can lead to new materials, devices, and processes that are more efficient and have unique properties.