Brownian motion的音标为:[ˈbraʊnɪən ˈməʊʃən],基本翻译为“布朗运动”,速记技巧为:形象记忆,布朗粒子在不停地做无规则运动。
Brownian motion的英文词源:
Brownian motion:以物理学家约翰·巴丁的名字命名,他研究了悬浮微粒的运动。
变化形式:
名词:Brownian motion
动词:Brownianize
相关单词:
Brownian particle(布朗粒子):指悬浮在液体中的微小颗粒,受到布朗运动的影响。
Brownian particle theory(布朗粒子理论):描述布朗运动的理论,用于解释悬浮微粒的无规则运动。
英文解释:
Brownian motion是一种无规则运动,通常描述悬浮在液体中的微小颗粒的运动。这种运动是由分子碰撞引起的,类似于气体分子的随机行走。
应用场景:
生物学:在生物学中,布朗运动被用来描述细胞内颗粒物的运动,如细胞器、微管和病毒等。
化学:在化学中,布朗运动也被用来描述悬浮液中的颗粒的运动,有助于理解化学反应的扩散过程。
总之,Brownian motion是一种重要的物理现象,在生物学、化学和物理学等领域都有广泛的应用。
常用短语:
1. Brownian motion 随机漫步
2. Random walk theory 布朗运动理论
3. Brownian particle 布朗粒子
4. Brownian motion equation 布朗运动方程
5. Stochastic process 布朗运动过程
6. Random fluctuation 随机波动
7. Brownian motion analysis 布朗运动分析
例句:
1. The particles in a liquid undergo Brownian motion, which is a random movement caused by the collisions with water molecules.
2. Random walk theory is a fundamental concept in physics that explains Brownian motion.
3. The Brownian motion of particles in a liquid is a random, yet beautiful, phenomenon.
4. Stochastic processes are essential in modeling Brownian motion and other random phenomena.
5. Analyzing Brownian motion requires a careful consideration of the random nature of the motion.
6. Understanding Brownian motion and its implications for scientific research is crucial.
英文小作文:
Title: Understanding Brownian Motion
Brownian motion is a fascinating phenomenon that occurs when particles in a liquid undergo random, yet regular, movements due to collisions with other particles or external forces. This motion is a result of the random nature of quantum mechanics and is essential in many scientific fields, including biology, chemistry, and physics.
To fully understand Brownian motion, we must first understand the basic principles of quantum mechanics, which govern the behavior of subatomic particles. When particles collide with each other or with external forces, they experience random fluctuations that cause them to move in different directions, resulting in Brownian motion. This motion is a beautiful example of how randomness can lead to complex patterns and structures that are difficult to predict with certainty.
Brownian motion has numerous applications in science and technology, from modeling the movement of cells in biology to studying chemical reactions and turbulence in fluids. Understanding Brownian motion can help us better understand the complex interactions between particles and systems, leading to new insights and discoveries that could transform our understanding of the world around us.