affine的音标为[əˈfaɪn]:/ə/发音时,唇齿轻闭,舌尖抵住上齿龈,舌面后部抬起,尽量让舌面后部后缩,尽可能让舌面后部肌肉紧张,但不要过分用力。/ɪ/发音时,舌尖抵住上齿龈,舌位略低,口腔开度略小,感觉喉咙处有阻塞感。
基本翻译为“仿射的”或“仿射变换的”。
速记技巧可以参考以下内容:发音时,舌尖抵住上齿龈,舌面后部肌肉尽量后缩,感觉像画一个“A”字;/ɪ/的发音要轻短,不要拖音。同时,注意这个单词常用于数学和物理领域。
以上内容仅供参考,建议通过阅读英语材料来提高发音和记忆技巧。
Affine的英文词源可以追溯到拉丁语affinis,意为“相关的,相似的”。Affine的变化形式主要有名词affinité(亲和力)和形容词affine(仿射的)。
相关单词:
1. Affinity:亲和力,相似性 - 指个体之间在情感、思想、兴趣等方面的相似性。
2. Affine Geometry:仿射几何学 - 是一种几何学分支,研究图形在仿射变换下的性质。
3. Affine Transform:仿射变换 - 一种在图像处理、计算机视觉等领域常用的变换方法,通过仿射变换可以改变图形的形状、大小和方向。
4. Affine Invariant:仿射不变量 - 指在仿射变换下保持不变的数学对象,常见于几何学、物理学等领域。
5. Affine Connection:仿射联络 - 一种在仿射几何学中使用的数学工具,用于研究图形在仿射变换下的运动和变形。
6. Affine Differential Equation:仿射微分方程 - 一种微分方程,其解可以在仿射变换下保持不变。
7. Affine Space:仿射空间 - 一种数学概念,是仿射代数结构的一类,具有仿射运算和数乘运算。
8. Affine Subspace:仿射子空间 - 指在仿射空间中与原空间具有相同或相似的性质的一组向量空间。
9. Affine Invariant Transformation:仿射不变变换 - 一种变换方法,可以在图像处理、计算机视觉等领域中应用,使得图像或数据在仿射变换下保持不变性。
10. Affine Matrix:仿射矩阵 - 是一种数学工具,用于表示仿射变换的矩阵形式。
常用短语:
1. Affine Transformations
2. Affine Invariance
3. Affine Group
4. Affine Space
5. Affine Relation
6. Affine Transform
7. Affine Invariant Detection
双语例句:
1. The affine transformation preserves length and angle. (仿射变换保持长度和角度。)
2. The affine group is a mathematical tool used in image processing. (仿射群是图像处理中使用的数学工具。)
3. Affine space is a mathematical concept related to vector spaces. (仿射空间是与向量空间相关的数学概念。)
4. The affine invariant detection algorithm is used to identify objects in images. (仿射不变性检测算法用于识别图像中的物体。)
5. The affine transform can be used to adjust the perspective of a photo. (仿射变换可用于调整照片的透视。)
6. The affine group is a powerful tool for manipulating images and videos. (仿射群是用于处理图像和视频的有力工具。)
7. Affine transformations are essential for understanding the geometry of curved spaces. (仿射变换对于理解弯曲空间的几何学至关重要。)
英文小作文:
Affine Transformations in Image Processing
Image processing is a field that uses various techniques to manipulate and analyze digital images. One of the most powerful tools in this field is the affine transformation, which can be used to adjust the perspective, scale, and rotation of images while maintaining their essential characteristics.
Affine transformations are essential for tasks such as image warping, object detection, and image registration, where precise control over the shape and position of objects is required. By understanding the properties of affine transformations, we can better utilize these techniques to achieve desired results in image processing.
Throughout history, images have been used to communicate ideas, convey emotions, and document events. The development of image processing techniques has opened up new possibilities for manipulating these images to create unique and exciting visual experiences. With the increasing use of digital devices and online platforms, image processing will continue to play an important role in the future of communication and expression.