fractional的音标是[ˈfrækʃənl],基本翻译是“分数的;小部分的;零头的”。速记技巧是将其拆分为辅音字母和元音字母来记忆。例如,可以首先记住“fraction”这个单词,其中包含了字母“f、r、a、c、t”,然后再根据记忆规律,将“fractional”中的元音字母组合分别对应到“fraction”中的各个字母,从而帮助记忆。
英文单词“fractional”的词源可以追溯到拉丁语“fracsum”或“fracso”,意为“碎片”或“部分”。这个词后来被引入英语,用来表示“部分的”或“小部分的”。
变化形式:
1. Feminine形式为“fractional”
2. Adjective形式为“fractional”
相关单词:
1. Fraction(分数):来自拉丁语“fracso”,意为“部分”。
2. Partial(部分的):直接来源于“partiality”(偏爱),而“partiality”又来源于拉丁语“particulum”(部分)。
3. Part(部分):直接来源于拉丁语“partis”(部分)。
4. Fragment(碎片):直接来源于拉丁语“fragmentum”(碎片),意为“部分”。
5. Discrete(离散的):来源于拉丁语“dis”(分开)和“cerebrum”(大脑),意为不连续的。
6. Quantum(量子):来源于拉丁语“quantum”(数量),意为小部分。
7. Minute(分钟):来源于拉丁语“minutiae”(细节),意为时间的小部分。
8. Partiality(偏爱):来源于拉丁语“partial”(部分的),意为对某一部分的偏爱。
9. Fractionalization(分数化):表示将一个整体分数化的过程。
10. Partiality(偏见):表示对某一部分的偏爱或歧视,与“partial”(部分的)有关。
以上单词都与“fractional”这个词源有直接或间接的联系,体现了英语词汇的丰富性和多样性。
常用短语:
1. fractional part of a number:一个数的分数部分
2. fractional number:分数
3. remainders in fractional division:分数除法余数
4. fractional arithmetic:分数运算
5. fractional sum:分数和
6. fractional difference:分数差
7. fractional product:分数积
例句:
1. The result of the fractional division is (3/7) as shown by the remainders of 2/7.
2. The sum of the fractions 1/2 and 3/4 is 5/6.
3. The difference between the fractions 2/3 and 4/5 is 2/15.
4. The product of the fractions 1/3 and 2/5 is 3/15.
5. The fraction 7/9 is a fractional part of the number 16.
6. In this problem, we need to perform fractional arithmetic operations to find the correct answer.
英文小作文:
Fractional numbers are an essential part of mathematics, and they are used in various contexts such as fractions of numbers, fractions of fractions, and so on. Fractional numbers can be used to represent a part of a whole or a part of another part, and they are very useful in various fields such as engineering, physics, and chemistry.
In this world, everything is made up of parts, and fractional numbers help us understand these parts better. For example, if we want to divide a cake into two parts, we can use a fraction to represent each part as a fraction of the whole cake. Similarly, if we want to calculate the speed of a car divided by the speed of another car, we can use fractional numbers to represent the speed of each car as a fraction of the total speed of both cars.
Fractional numbers are also used in scientific experiments and calculations, where they help us understand the results better and make sense of complex data. Fractional numbers are also used in engineering calculations, where they help us design and build structures that are more efficient and reliable.
In conclusion, fractional numbers are very useful in various contexts and fields, and they help us understand and solve problems better. They are an essential part of mathematics and help us understand the world better.